Analisis pengaruh penambahan gardu induk Guluk-Guluk terhadap aliran daya dan profil tegangan pada sub sistem Krian Gresik
Main Article Content
Abstract
Kestabilan suatu sistem tenaga listrik sendiri merupakan kemampuan sebuah sistem tenaga listrik dalam mempertahankan tegangan, frekuensi, dan daya di setiap bus sistem interkoneksi pada kondisi normal baik sebelum dan sesudah terjadinya gangguan. Sistem akan memasuki keadaan ketidakstabilan ketika terjadi gangguan, peningkatan permintaan beban dan adanya perubahan kondisi sistem, keadaan tersebut akan menyebabkan penurunan performa sistem tenaga listrik. Pada tahun 2015-2019 pulau madura hanya terdapat lima gardu induk, seiring dengan pertambahan kebutuhan tenaga listrik di beberapa wilayah pulau madura, untuk memperbaiki mutu dan keandalan penyaluran tenaga listrik ke konsumen, hal inilah yang mendukung proyek penambahan Gardu Induk Guluk Guluk. Gardu Induk Guluk-Guluk merupakan salah satu bagian dari sub sistem Krian Gresik. Dengan adanya penambahan Gardu Induk Guluk-Guluk tersebut akan berpengaruh terhadap aliran daya dan tegangan pada sistem tenaga listrik. Analisis dilakukan pada kondisi normal sebelum dan setelah adanya Gardu Induk Guluk-Guluk. Kondisi tegangan pada sub sistem Krian Gresik saat sebelum dan sesudah pembangunan Gardu Induk Guluk-Guluk masih memenuhi standart, namun ada beberapa bus yang mengalami penurunan tegangan dibawah 95%. Gardu Induk yang mengalami penurunan tegangan dibawah 95% sebelum pembangunan Gardu Induk Guluk-Guluk, yaitu pada Gardu Induk Bunduran, Gardu Induk Porong, dan Gardu Induk Maspion. Saat setelah pembangunan Gardu Induk Guluk-Guluk, terdapat penambahan Gardu induk yang mengalami penurunan nilai tegangan, yaitu Gardu Induk Sampang, Gardu Induk Pamekasan, Gardu Induk Guluk-Guluk, dan Gardu Induk Sumenep. Aliran daya terbesar saat terjadi penurunan tegangan adalah pada bus Bus 1 Bunduran.
The stability of an electric power system itself is the ability of an electric power system to maintain the voltage, frequency, and power in each interconnecting bus system in normal conditions both before and before the disturbance. The system will enter a state of instability when there is a disturbance, an increase in load demand and a change in system conditions, this situation will cause a decrease in the performance of the electric power system. In 2015-2019 Madura Island there are five substations, along with the increasing need for energy in the Madura Island area, to improve some and control electric power, this is what supports the addition of Guluk-Guluk Substations. Guluk-Guluk Substation is one part of the Krian Gresik sub-system. With the addition of the Guluk-Guluk Substation, it will affect the flow of power and voltage in the electric power system. The analysis was carried out under normal conditions before and after the Guluk-Guluk Substation. The voltage conditions in the Krian Gresik sub-system before and before the construction of the Guluk-Guluk Substation still met the standard, but there were several buses that experienced a voltage drop below 95%. Substations that experienced a voltage drop below 95% before the construction of the Guluk-Guluk Substations, namely the Bunduran Substation, Porong Substation, and Maspion Substation. After the construction of the Guluk-Guluk Substation, there were additional substations that experienced a decrease in voltage values, namely the Sampang Substation, Pamekasan Substation, Guluk-Guluk Substation, and Sumenep Substation. The largest power flow when there is a voltage drop is on the Bus 1 Bunduran.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Penulis yang menerbitkan Artikel di Jurnal ELTEK persyaratan berikut:
- Penulis memegang hak cipta dan memberikan hak jurnal untuk publikasi pertama dengan pemegang lisensi dari Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License yang memungkinkan orang lain untuk membagikan karya tersebut dengan pengakuan atas karya dan publikasi awal jurnal ini.
- Penulis dapat membuat kontrak tambahan yang terpisah untuk distribusi non-eksklusif dari versi jurnal yang diterbitkan dari karya tersebut (misalnya, mempostingnya ke repositori kelembagaan atau menerbitkannya dalam sebuah buku), dengan pengakuan publikasi awal dari jurnal ini.
- Penulis proklamasi untuk memposting karya mereka secara online (misalnya, di repositori kelembagaan atau di situs web penulis) sebelum dan selama proses pengiriman, karena hal itu dapat mengarah pada pertukaran yang produktif, serta kutipan yang lebih awal dan lebih besar dari karya yang diterbitkan.
References
[2] Y. Tang, “Framework of comprehensive defense architecture for power system security and stability,” Power System Technology, vol. 36, no. 8, pp. 1–5, Aug. 2012.
[3] Y. Shu dan Y. Tang, “Analysis and Recommendations for the Adaptability of China’s Power System Security and Stability Relevant Standards, CSEE Journal Of Power And Energy Systems, Vol. 3, No. 4, December 2017
[4] N. Hatziargyriou, et al. “Definition and Classification of Power System Stability – Revisited & Extended” IEEE Transactions On Power Systems, Vol. 36, No. 4, July 2021
[5] Kunduret al., “Definition and classification of power system stability,” IEEE Trans. Power Syst., vol. 19, no. 3, pp. 1387–1401, May 2004.
[6] P. Kundur, Power System Stability and Control. New York, NY, USA: McGraw-Hill, 1994.
[7] D. Gautam and V. Vittal, “Impact of DFIG based wind turbine generators on transient and small signal stability of power systems,” IEEE Trans. Power Syst., vol. 24, no. 3, pp. 1426–1434, Aug. 2009.
[8] G. Tsourakis, B. M. Nomikos, and C. D. Vournas, “Effect of wind parks with doubly fed asynchronous generators on small-signal stability,” Electr. Power Syst. Res., vol. 79, no. 1, pp. 190–200, Jan. 2009.
[9] S. Vukosavic, Grid-Side Converter Design and Control. Belgrade, Serbia: Springer, 2018.
[10] M. J. Gibbard, P. Pourbeik, and D. J. Vowles, Small-Signal Stability, Control and Dynamic Performance of Power Systems Adelaide, Australia: Univ. Adelaide Press, 2015.
[11] T. Van Cutsem and C. Vournas, Voltage Stability Electric Power System. Norwell, MA: Kluwer, 1998.
[12] Y. Song, et al. “Static Voltage Stability Analysis of Distribution Systems Based on Network-Load Admittance Ratio” IEEE Transactions on Power Systems, Volume: 34, Issue: 3, May 2019
[13] Luan F. S. Colombari, et al. “Continuation Load Flow Considering Discontinuous Behaviors of Distribution Grids”, IEEE Transactions on Power Systems, Volume: 34, Issue: 5, Sept. 2019
[14] Yipeng Dong, et al. “Demand-Response-Based Distributed Preventive Control to Improve Short-Term Voltage Stability”, IEEE Transactions on Smart Grid, Volume: 9, Issue: 5, Sept. 2018,
[15] Muhammad Fahmi Hakim, et al. ”Analisis Perencanaan Kompensator Daya Kapasitif Di Gardu Induk (GI) Sumenep Untuk Perbaikan Jatuh Tegangan”, Jurnal ELTEK, Vol 15 No 02, April 2017 ISSN 1693-4024, Hal 81-94
[16] Permen ESDM No. 20 Tahun 2020
[17] Laporan Tahunan 2019 PT. Rekadaya Elektrika
[18] Teshome Goa Tella, et al. “Voltage Stability Assessment on Ethiopian 230 KV Transmission Network Using Modified Voltage Stability Indices”, IEEE PES/IAS PowerAfrica, 2018
[19] Das, Debapriya. 2006. Electrical Power Systems. West Bengal: Department of Electrical Engineering Indian Institute of Technology.