Penggunaan SFCL untuk membatasi arus gangguan pada jaringan distribusi terintegrasi dengan pembangkit energi baru terbarukan
Main Article Content
Abstract
ABSTRAK
Integrasi pembangkit listrik energi baru terbarukan ke jaringan listrik yang sudah ada dapat menyebabkan kenaikan arus gangguan, mengakibatkan peralatan proteksi yang ada tidak mampu untuk menangulanginya. Hal ini tentunya dapat menyebabkan kerusakan peralatan-peralatan listrik yang dilewati arus gangguan tersebut dan dapat mengakibatkan kegagalan dalam sistem penyaluran daya listrik. Pada penelitian ini dilakukan studi penggunaan peralatan superconducting fault current limiter/SFCL untuk membatasi arus gangguan yang timbul pada jaringan tenaga listrik. Dengan cara memanfaatkan impedansi yang dimiliki oleh SFCL untuk menggerakan mechanical switch (fast switch) sehingga arus gangguan akan melewati current limiting reactor yang terhubung paralel dengan superconductor yang dapat bekerja kurang dari setengah siklus setelah terjadinya ganggun. Pengujian sistem dilakukan dengan beberapa skenario yaitu: 1. sistem tanpa integrasi pembangkit listrik energi baru terbarukan; 2. sistem dengan integrasi pembangkit listrik energi baru terbarukan; 3. sistem dengan integrasi pembangkit listrik energi baru terbarukan dan superconducting fault current limiter. Hasil pengujian skenario 3 menunjukan adanya penurunan arus gangguan yang semula sebesar I = 1,007 kA menjadi I = 0,278 kA dan nilai tegangan sistem yang semula turun sebesar Vrms = 0,856 pu naik menjadi Vrms = 0,96 pu.
ABSTRACT
The integration of new and renewable energy power plants into existing power grids can cause an increase in fault currents, rendering existing protective equipment unable to cope. This of course can result in damage to electrical equipment through which the disturbance current passes and can result in failure in the electrical power distribution system. This research will conduct a study on the use of superconducting fault current limiter equipment to limit the fault currents that appear in the power grid, by utilizing a very high impedance to drive the mechanical switch (fast switch) so that the fault current will pass through the current limiting reactor which is connected parallel to the superconductor. which can work for less than half a cycle after the disturbance. System testing is carried out with several scenarios, namely: 1. systems without integration of new renewable energy power plants, 2. systems with integration of new renewable energy power plants, 3. systems with integration of new renewable energy power plants and superconducting fault current limiter. The test results of scenario 3 showed a decrease in the fault current by the original I = 1,007 kA to I = 0.278 kA and the value of the system voltage that originally decreased by Vrms = 0.856 pu rose to Vrms = 0.96 pu
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Penulis yang menerbitkan Artikel di Jurnal ELTEK persyaratan berikut:
- Penulis memegang hak cipta dan memberikan hak jurnal untuk publikasi pertama dengan pemegang lisensi dari Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License yang memungkinkan orang lain untuk membagikan karya tersebut dengan pengakuan atas karya dan publikasi awal jurnal ini.
- Penulis dapat membuat kontrak tambahan yang terpisah untuk distribusi non-eksklusif dari versi jurnal yang diterbitkan dari karya tersebut (misalnya, mempostingnya ke repositori kelembagaan atau menerbitkannya dalam sebuah buku), dengan pengakuan publikasi awal dari jurnal ini.
- Penulis proklamasi untuk memposting karya mereka secara online (misalnya, di repositori kelembagaan atau di situs web penulis) sebelum dan selama proses pengiriman, karena hal itu dapat mengarah pada pertukaran yang produktif, serta kutipan yang lebih awal dan lebih besar dari karya yang diterbitkan.
References
[2] Hidayat, T, Hayusman, L. M dan Setiawan, R. 2018. Integrasi Distributed Generation (DG) pada Sistem Distribusi 20 kV sebagai Upaya Mengurangi Losses dan Meningkatkan Profil Tegangan. Jurnal Industri Inovati, 8(2), 22-26.
[3] Alex, M dan Josephine, A. A. 2013. Impact due to the application Location of a Dispersed Generation on the Distribution System Protection with SFCL Application using PSCAD. International Conference on Energy Efficient Technologies for Sustainability, 1225-1229.
[4] Pina, J. M, Neves, M. V dan Alvarez, A. 2010. High Temperature Superconducting Fault Current Limiters as Enabling Technology in Electrical Grids with Increased Distributed Generation Penetration. Doctoral Conference on Computing electrical and Industrial Systems, 427-434.
[5] Ye, L dan Lin, L. Z. 2010. Study of Superconducting Fault Current Limiters for System Integration of Wind Farms. IEEE Transactions on Applied Superconductivity, 22(3), 1233-1237.
[6] Cakal, G, Bagriyanik, F. G, Bagriyanik, M. 2013. The Effect of Fault Current Limiters on Distribution Systems with Wind Turbine Generators. International Journal of Renewable Energy Research, 3(1), 148-154.
[7] Kuncoro, E, Suyono, H, Hasanah, R. N dan Mokhlis, H. 2017. Pemodelan dan Analisis Fault Current Limiter sebagai Pembatas Arus Hubung Singkat pada GI Sengkaling Malang. Jurnal Electrics Electronics Communications Controls Informatics, 11(1), 9-13.
[8] You, II. K, Lim, S. H dan Kim, J. C. 2011. Operational Characteristics of Hybrid SFCL with First Half Cycle Non-Limiting Operational Considering its Design Parameter. IEEE Transactions on Applied Superconductiv, 21(3), 1271-1274.
[9] Hyun, Ok-Bae, Park, Kwon-Bae, Sim, J, Kim, Hye-Rim, Yim, Seong-Woo dan Oh, II-Sung. 2009. Introduction of a Hybrid SFCL in KEPCO Grid and Local Points at Issue. IEEE Transactions on Applied Superconductivity, 19(3), 1946-1949.
[10] Sa’adah, M, Pujiantara, M dan Soedibjo. 2016. Analisa penggunaan Hybrid Superconducting Fault Current Limiter (SFCL) pada Sistem Proteksi Tenaga Listrik di Kawasan Tursina. Jurnal Teknik POMITS, 1(1), 1-6.
[11] Li, B, Li, C dan Guo, F. 2015. Application Studies on the Active SISFCL in Electric Transmission System and Its Impact on Line Distance Protection. IEEE Transactions on Applied Superconductivity. 25(2)