Analisis peramalan kebutuhan energi listrik sektor industri di Jawa Timur dengan metode regresi linear
Main Article Content
Abstract
Abstrak
Pada kehidupan sekarang maupun akan datang, energi listrik menjadi kebutuhan pokok masyarakat. Kebutuhan energi listrik selalu mengalami peningkatan, diikuti meningkatnya pertumbuhan penduduk. Permasalahan akan muncul apabila kebutuhan energi listrik tidak diperkirakan. Maka perlu dilakukan peramalan kebutuhan energi listrik untuk memprediksikan ketersediaan energi listrik di masa mendatang. Pada penelitian ini, dilakukan peramalan kebutuhan energi listrik menggunakan metode regresi linier pada sektor industri di Jawa Timur untuk tahun 2023-2027. Berdasarkan hasil perhitungan prediksi dan MAPE (2009-2021), didapatkan metode regresi linier masih baik dan layak digunakan menurut standar MAPE. Kemudian dibandingkan hasil prediksi dan MAPE (2010-2020) antara metode regresi linear dengan metode time series pada penelitian sebelumnya, didapatkan metode time series menghasilkan prediksi dan MAPE lebih baik dibanding metode regresi linier pada pelanggan listrik, sedangkan pada daya tersambung, energi listrik terjual, dan pendapatan penjualan energi listrik didapatkan metode regresi linier menghasilkan prediksi dan MAPE lebih baik dibanding metode time series. Tetapi, penulis menghitung peramalan kebutuhan energi listrik pada sektor industri di Jawa Timur (2023-2027) hanya menggunakan metode regresi linier. Sehingga dihasilkan akan terjadi kenaikan setiap tahun dengan rata-rata untuk pelanggan listrik sebesar 5.264 pelanggan, daya tersambung sebesar 328,49 MVA, energi listrik terjual sebesar 580,64 GWh, dan pendapatan penjualan energi listrik sebesar 1.065.266,21 Juta Rupiah. Menurut hasil tersebut, maka pasokan energi listrik harus tercukupi dengan merencanakan pengembangan atau penambahan kapasitas pembangkit listrik.
Abstract
In present and future life, electrical energy becomes basic needs of community. Electrical energy needs always increased, followed by increased population growth. Problem will appear if electrical energy needs is not expected. Therefore, it is necessary to forecast electrical energy needs to predict the availability of electrical energy in future. In this study, calculation of forecasting electrical energy needs using linear regression methods in industrial sector in East Java for 2023-2027. Based on calculation results of prediction and MAPE (2009-2021), it is obtained linear regression method is still good and worthy of use according to MAPE standard. Then comparison results of prediction and MAPE (2010-2020) between linear regression method with time series method in previous study, it was obtained that time series method produced predictive and MAPE is better than linear regression methods on electricity customers, while in power connected, electric energy sold, and earnings of electrical energy sales obtained linear regression method produces predictive and MAPE better than time series method. However, authors calculation of electrical energy needs in industrial sector in East Java (2023-2027) only using linear regression methods. So there will be increase every year with average for electricity customers of 5,264 customers, power connected of 328.49 MVA, electric energy sold of 580.64 GWh, and earnings of electrical energy sales of 1,065,266.21 million rupiah. According to results, supply of electrical energy should be fulfilled by planning development or additional power plant capacity.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Penulis yang menerbitkan Artikel di Jurnal ELTEK persyaratan berikut:
- Penulis memegang hak cipta dan memberikan hak jurnal untuk publikasi pertama dengan pemegang lisensi dari Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License yang memungkinkan orang lain untuk membagikan karya tersebut dengan pengakuan atas karya dan publikasi awal jurnal ini.
- Penulis dapat membuat kontrak tambahan yang terpisah untuk distribusi non-eksklusif dari versi jurnal yang diterbitkan dari karya tersebut (misalnya, mempostingnya ke repositori kelembagaan atau menerbitkannya dalam sebuah buku), dengan pengakuan publikasi awal dari jurnal ini.
- Penulis proklamasi untuk memposting karya mereka secara online (misalnya, di repositori kelembagaan atau di situs web penulis) sebelum dan selama proses pengiriman, karena hal itu dapat mengarah pada pertukaran yang produktif, serta kutipan yang lebih awal dan lebih besar dari karya yang diterbitkan.
References
[2] M. Dinesh Reddy, Load Forecasting using Linear Regression Analysis and Moving Average Technique in Time Series Model for RGUKT, R.K. Valley Campus HT Feeder, International Journal of Engineering Science and Computing, Volume 7 Issue No.5, May-2017
[3] Alfred Rey G. Vasquez, Michael Ernie F. Rodriguez, Roy C. Dayupay, Energy Consumption Forecasting Model for Puerto Princesa Distribution System Using Multiple Linear Regression, International Journal of Innovative Science and Research Technology, ISSN No:-2456-2165, Volume 5, Issue 11, November – 2020
[4] Aneeque Ahmed Mir, et all, Short Term Load Forecasting for Electric Power Utilities: A Generalized Regression Approach Using Polynomials and Cross-Terms †, Licensee MDPI, Basel, Switzerland, 2021
[5] Hong, T.; Fan, S. Probabilistic electric load forecasting: A tutorial review. Int. J. Forecast. 2016, 32, 914–938.
[6] Mir, A.A.; Alghassab, M.; Ullah, K.; Khan, Z.A.; Lu, Y.; Imran, M. A Review of Electricity Demand Forecasting in Low and Middle Income Countries: The Demand Determinants and Horizons. Sustainability 2020, 12, 5931.
[7] Nazih Abu-Shikhah1, Fawwaz Elkarmi1, Osama M. Aloquili, Medium-Term Electric Load Forecasting Using Multivariable Linear and Non-Linear Regression, Scientific Research, Smart Grid and Renewable Energy, 2011, 2, 126-135 doi:10.4236/sgre.2011.22015 Published Online May 2011
[8] D. Bassi and O. Olivare, “Medium Term Electric Load Forecasting Using TLFN Neural Networks,” International Journal of Computers, Communications & Control, Vol. I, No. 2, 2006, pp. 23-32.
[9] B. Bowerman, R. O’Connell and A. Koehler, “Forecasting, Time Seriesand Regression: An Applied Approach,”
Thomson Brooks/Cole, California, 2005
[10] M. W. Kristanto, “Peramalan Kebutuhan Energi Listrik UID Jawa Timur Metode Time Series Sektor Industri,” Jurnal Teknik Elektro, vol. 10, no. 03, pp. 793-803, 2021.
[11] M. W. Purnama, “Peramalan Kebutuhan Energi Listrik UID Jawa Timur Metode Time Series Berbasis Minitab v19,” Jurnal Teknik Elektro, vol. 10, no. 02, pp. 485-495, 2021.
[12] J. Kasmir, Studi Kelayakan Bisnis. Jakarta: Prenada Media, 2003.
[13] M. A. Maricar, “Analisa Perbandingan Nilai Akurasi Moving Average dan Exponential Smoothing Untuk Sistem Peramalan Pendapatan Pada Perusahaan XYZ,” Jurnal Sistem dan Informatika, vol. 13, no. 02, pp. 36-45, 2019.
[14] PT. PLN, Statistik PLN 2009. Jakarta: Sekretariat Perusahaan PT. PLN (Persero), 2010.
[15] PT. PLN, PLN Statistics 2010. Jakarta: Sekretariat Perusahaan PT. PLN (Persero), 2011.
[16] PT. PLN, Statistik PLN 2011. Jakarta: Sekretariat Perusahaan PT. PLN (Persero), 2012.
[17] PT. PLN, Statistik PLN 2012. Jakarta: Sekretariat Perusahaan PT. PLN (Persero), 2013.
[18] PT. PLN, PLN Statistics 2013. Jakarta: Sekretariat Perusahaan PT. PLN (Persero), 2014.
[19] PT. PLN, Statistik PLN 2014. Jakarta: Sekretariat Perusahaan PT. PLN (Persero), 2015.
[20] PT. PLN, PLN Statistics 2015. Jakarta: Sekretariat Perusahaan PT. PLN (Persero), 2016.
[21] PT. PLN, Statistik PLN 2016. Jakarta: Sekretariat Perusahaan PT. PLN (Persero), 2017.
[22] PT. PLN, PLN Statistics 2017. Jakarta: Sekretariat Perusahaan PT. PLN (Persero), 2018.
[23] PT. PLN, Statistik PLN 2018. Jakarta: Sekretariat Perusahaan PT. PLN (Persero), 2019.
[24] PT. PLN, Statistik PLN 2019. Jakarta: Sekretariat Perusahaan PT. PLN (Persero), 2020.
[25] PT. PLN, Statistik PLN 2020. Jakarta: Sekretariat Perusahaan PT. PLN (Persero), 2021.
[26] PT. PLN, Statistik PLN 2021. Jakarta: Sekretariat Perusahaan PT. PLN (Persero), 2022.