Pemanfaatan modul Geiger-Muller untuk mendeteksi radiasi pada pengolahan imbah B3 rumah sakit

Main Article Content

Muhammad Syaeful Fajar Kumala Mahda

Abstract

ABSTRAK


Secara alami radiasi hadir di lingkungan kita. Dalam kehidupan manusia, berdasarkan evolusi lingkungan, terdapat tingkat radiasi ionizing yang signifikan. Radiasi alfa dan beta merupakan jenis radiasi yang banyak ditemukan di sekitar. Manusia yang terpapar radiasi jenis beta mungkin memberikan beberapa risiko kesehatan eksternal untuk tubuhnya. Pengolahan limbah B3 pada rumah sakit sebagai peningkatan limbah berbahaya infeksius yang disebabkan oleh pandemi dikaitkan dengan risiko penularan virus. Pengembangan alat yang dapat menghitung tingkat radiasi dalam suatu ruangan pengelolaan limbah B3 bisa menjadi inovasi yang memungkinkan pengguna dapat mengawasi tingkat radiasi untuk menekan dampak radiasi bagi manusia. Untuk menjembatani kendala yang ada, maka penelitian ini merancang sebuah alat ukur radiasi menggunakan Geiger-Muller Counter berbantuan mikrokontroler Arduino untuk mengatasi masalah B3 yang ada di rumah sakit. Modul ini dirancang untuk membantu petugas pengolah limbah agar dapat melindungi diri dari paparan radiasi yang melebihi dosis radiasi. Modul geiger-muller terdiri dari Arduino uno sebagai peralatan kontrol dan LCD Nokia 5110 sebagai display hasil pengukuran. Modul Geiger-muller terdapat tabung Geiger M4011, mikrokontroler Arduino uno dan LCD Nokia 5110. Modul Geiger-Muller berhasil diujikan dengan ion chamber yang mengandung material radioaktif. Modul Geiger-Muller memberikan respon berupa suara/alarm dan tanda LED menyala berkedip Ketika mendeteksi peningkatan intensitas radiasi di sekitar tabung Geiger M4011.


ABSTRACT


Radiation is naturally present in our environment. In human life, based on the evolution of the environment, there is a significant level of ionizing radiation. Alpha and beta radiation are types of radiation that are commonly found around. Humans who are exposed to beta-type radiation may present some external health risks to their bodies. B3 waste treatment in hospitals as an increase in infectious hazardous waste caused by a pandemic is associated with the risk of virus transmission. The development of a tool that can calculate radiation levels in a B3 waste management room can be an innovation that allows users to monitor radiation levels to reduce the impact of radiation on humans. To bridge the existing obstacles, this study designed a radiation measuring instrument using the Geiger-Muller Counter assisted by an Arduino microcontroller to overcome the B3 problem in the hospital. The design of this module is designed to help waste treatment workers to protect themselves from radiation exposure that exceeds the radiation dose. The geiger-muller module consists of an Arduino uno as a control device and a Nokia 5110 LCD as a display of measurement results. The Geiger-Muller module contains a Geiger M4011 tube, an Arduino uno microcontroller and a Nokia 5110 LCD. The Geiger-Muller module has been successfully tested with an ion chamber containing radioactive material. The Geiger-Muller module responds in the form of sound/alarm and the LED flashes when it detects an increase in radiation intensity around the Geiger M4011 tube.

Downloads

Download data is not yet available.

Article Details

How to Cite
FAJAR, Muhammad Syaeful; MAHDA, Kumala. Pemanfaatan modul Geiger-Muller untuk mendeteksi radiasi pada pengolahan imbah B3 rumah sakit. JURNAL ELTEK, [S.l.], v. 20, n. 2, p. 95-102, oct. 2022. ISSN 2355-0740. Available at: <https://eltek.polinema.ac.id/index.php/eltek/article/view/361>. Date accessed: 09 dec. 2022. doi: https://doi.org/10.33795/eltek.v20i2.361.
Section
Articles

References

[1] A. Chaturvedi and V. Jain, “Effect of Ionizing Radiation on Human Health,” Int. J. Plant Environ., vol. 5, no. 03, pp. 200–205, 2019, doi: 10.18811/ijpen.v5i03.8.
[2] N. F. Abu Bakar, S. Amira Othman, N. F. Amirah Nor Azman, and N. Saqinah Jasrin, “Effect of ionizing radiation towards human health: A review,” IOP Conf. Ser. Earth Environ. Sci., vol. 268, no. 1, 2019, doi: 10.1088/1755-1315/268/1/012005.
[3] S. V. Musolino, J. DeFranco, and R. Schlueck, “The ALARA principle in the context of a radiological or nuclear emergency,” Health Phys., vol. 94, no. 2, pp. 109–111, 2008, doi: 10.1097/01.HP.0000285801.87304.3f.
[4] B. Utomo et al., “Analysis of Tube Leakage of X-Ray Radiation Using Geiger Muller Sensor Equipped with Data Storage,” Indones. J. Electron. Electromed. Eng. Med. Informatics, vol. 4, no. 2, pp. 78–84, 2022, doi: 10.35882/ijeeemi.v4i2.5.
[5] V. Tuka, I. N. Finahari, and Djumadi, “Teknologi Pengelolaan Limbah Radioaktif di RSCM,” Semin. Tah. Pengawas. Pemanfaat. Tenaga Nukl., pp. 194–206, 2003.
[6] A. A. Purwanti, “Pengelolaan Limbah Bahan Berbahaya dan Beracun Rumah Sakit Di RSUD Dr.Soetomo Surabaya,” J. Kesehat. Lingkung., vol. 10, No.3, pp. 291–298, 2018.
[7] J. Valizadeh, A. Hafezalkotob, S. M. Seyed Alizadeh, and P. Mozafari, “Hazardous infectious waste collection and government aid distribution during COVID-19: A robust mathematical leader-follower model approach,” Sustain. Cities Soc., vol. 69, no. February, 2021, doi: 10.1016/j.scs.2021.102814.
[8] A. P. Stefanoyiannis, E. Sagia, X. Geronikola-Trapali, I. Armeniakos, A. Prentakis, and S. N. Chatziioannou, “132 Predisposal Management of Medical Solid Radioactive Waste: the University General Hospital of Athens ‘Attikon’ Experience,” Radiother. Oncol., vol. 102, pp. S58–S59, 2012, doi: 10.1016/s0167-8140(12)70104-4.
[9] I. Meric, G. A. Johansen, M. B. Holstad, A. F. Calderon, and R. P. Gardner, “Enhancement of the intrinsic gamma-ray stopping efficiency of Geiger-Müller counters,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 696, pp. 46–54, 2012, doi: 10.1016/j.nima.2012.08.086.
[10] A. Miyamoto, T. Hashimoto, K. Makimura, K. Kanda, T. Fujita, and K. Maenaka, “Wafer level packaging for MEMS Geiger counter,” Int. Conf. Emerg. Trends Eng. Technol. ICETET, pp. 66–69, 2012, doi: 10.1109/ICETET.2012.20.
[11] D. H. Wilkinson, “The Geiger discharge revisited Part I. The charge generated,” Nucl. Inst. Methods Phys. Res. A, vol. 321, no. 1–2, pp. 195–210, 1992, doi: 10.1016/0168-9002(92)90388-K.
[12] William James Price, Nuclear Radiation Detection. McGraw-Hill, 1958.
[13] D. Hariyanto and S. Permana, “Studi Intensitas Radiasi Menggunakan Survey Meter Berbasis Tabung Geiger M4011 dan Mikrokontroler Arduino Uno,” Pros. Simp. Nas. Inov. dan Pembelajaran Sains, no. June 2020, pp. 192–198, 2019.
[14] P. Dan et al., “Pembuatan tabung detektor geiger muller tipe jendela samping,” 2011.